5,398 research outputs found

    Ultrashort pulses and short-pulse equations in (2+1)(2+1)-dimensions

    Full text link
    In this paper, we derive and study two versions of the short pulse equation (SPE) in (2+1)(2+1)-dimensions. Using Maxwell's equations as a starting point, and suitable Kramers-Kronig formulas for the permittivity and permeability of the medium, which are relevant, e.g., to left-handed metamaterials and dielectric slab waveguides, we employ a multiple scales technique to obtain the relevant models. General properties of the resulting (2+1)(2+1)-dimensional SPEs, including fundamental conservation laws, as well as the Lagrangian and Hamiltonian structure and numerical simulations for one- and two-dimensional initial data, are presented. Ultrashort 1D breathers appear to be fairly robust, while rather general two-dimensional localized initial conditions are transformed into quasi-one-dimensional dispersing waveforms

    Tectonics and volcanisms of Mars

    Get PDF
    Televised images of Mars transmitted from interplanetary stations are used to develop a theory of the structure and development of the planet. Crater chronology, the structure of planetary bodies in the Earth group, and a comparison of the Earth planetary bodies are among the factors included

    Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories

    Full text link
    Dynamical equations are formulated and a numerical study is provided for self-oscillatory model systems based on the triple linkage hinge mechanism of Thurston -- Weeks -- Hunt -- MacKay. We consider systems with holonomic mechanical constraint of three rotators as well as systems, where three rotators interact by potential forces. We present and discuss some quantitative characteristics of the chaotic regimes (Lyapunov exponents, power spectrum). Chaotic dynamics of the models we consider are associated with hyperbolic attractors, at least, at relatively small supercriticality of the self-oscillating modes; that follows from numerical analysis of the distribution for angles of intersection of stable and unstable manifolds of phase trajectories on the attractors. In systems based on rotators with interacting potential the hyperbolicity is violated starting from a certain level of excitation.Comment: 30 pages, 18 figure

    A homoclinic tangle on the edge of shear turbulence

    Full text link
    Experiments and simulations lend mounting evidence for the edge state hypothesis on subcritical transition to turbulence, which asserts that simple states of fluid motion mediate between laminar and turbulent shear flow as their stable manifolds separate the two in state space. In this Letter we describe a flow homoclinic to a time-periodic edge state. Its existence explains turbulent bursting through the classical Smale-Birkhoff theorem. During a burst, vortical structures and the associated energy dissipation are highly localized near the wall, in contrast to the familiar regeneration cycle

    Is more memory in evolutionary selection (de)stabilizing?

    Get PDF
    We investigate the effects of memory on the stability of evolutionary selection dynamics based on a multi-nomial logit model in an asset pricing model with heterogeneous beliefs. Whether memory is stabilizing or destabilizing depends in general on three key factors: (1) whether or not the weights on past observations are normalized; (2) the ecology of forecasting rules, in particular the average strength of trend extrapolation and the spread in biased forecasts, and (3) whether or not costs for information gathering of economic fundamentals have to be incurred.

    Internal and external factors of food security policy in Russia

    Get PDF
    The article substantiates that food security and food independence of Russia is accompanied by new internal and external factors. Counter-measures from Russia include quickened import substitution, modernization of agriculture, and investments for increase of efficiency and competitiveness under the conditions of growing economic, social, political, and natural & climatic turbulence. As to foreign policy, these counter-measures include membership in the WTO, integration into the Eurasian Economic Union, globalization of agricultural sphere, foreign sanctions against or limiting food import in Russia, and exchange of partners in export and import. Policy of food security and independence is conducted under the conditions of high inflation and is rather costly. Vectors of food security of Russia are differently directed, though there is economic growth of agriculture. Food security and food independence become a part of national security and independence. Innovational strategy of modernization of agriculture should be considered to be the highest priority of country’s development. Increase of support for Russian agriculture from state budget, regional budget, federal and regional programs, and subsidies are especially important.peer-reviewe

    Distributed Formal Concept Analysis Algorithms Based on an Iterative MapReduce Framework

    Get PDF
    While many existing formal concept analysis algorithms are efficient, they are typically unsuitable for distributed implementation. Taking the MapReduce (MR) framework as our inspiration we introduce a distributed approach for performing formal concept mining. Our method has its novelty in that we use a light-weight MapReduce runtime called Twister which is better suited to iterative algorithms than recent distributed approaches. First, we describe the theoretical foundations underpinning our distributed formal concept analysis approach. Second, we provide a representative exemplar of how a classic centralized algorithm can be implemented in a distributed fashion using our methodology: we modify Ganter's classic algorithm by introducing a family of MR* algorithms, namely MRGanter and MRGanter+ where the prefix denotes the algorithm's lineage. To evaluate the factors that impact distributed algorithm performance, we compare our MR* algorithms with the state-of-the-art. Experiments conducted on real datasets demonstrate that MRGanter+ is efficient, scalable and an appealing algorithm for distributed problems.Comment: 17 pages, ICFCA 201, Formal Concept Analysis 201

    Breathers on quantized superfluid vortices

    Get PDF
    We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings

    On the limited amplitude resolution of multipixel Geiger-mode APDs

    Full text link
    The limited number of active pixels in a Geiger-mode Avalanche Photodiode (G-APD) results not only in a non-linearity but also in an additional fluctuation of its response. Both these effects are taken into account to calculate the amplitude resolution of an ideal G-APD, which is shown to be finite. As one of the consequences, the energy resolution of a scintillation detector based on a G-APD is shown to be limited to some minimum value defined by the number of pixels in the G-APD.Comment: 5 pages, 3 figure

    Hopf Bifurcations in a Watt Governor With a Spring

    Full text link
    This paper pursues the study carried out by the authors in "Stability and Hopf bifurcation in a hexagonal governor system", focusing on the codimension one Hopf bifurcations in the hexagonal Watt governor differential system. Here are studied the codimension two, three and four Hopf bifurcations and the pertinent Lyapunov stability coefficients and bifurcation diagrams, ilustrating the number, types and positions of bifurcating small amplitude periodic orbits, are determined. As a consequence it is found an open region in the parameter space where two attracting periodic orbits coexist with an attracting equilibrium point.Comment: 30 pages and 7 figure
    corecore